Aviation safety is the study and practice of managing risks in aviation. This includes preventing aviation accidents and incidents through research, educating air travel personnel, passengers and the general public, as well as the design of aircraft and aviation infrastructure. The aviation industry is subject to significant regulations and oversight.
Aviation security is focused on protecting air travelers, aircraft and infrastructure from intentional harm or disruption, rather than unintentional mishaps.
On December 14, 1903, the Wright brothers conducted a test flight of their powered airplane from the slope of Big Kill Devil Hill in North Carolina. Upon takeoff, the airplane lifted about 15 feet off the ground, stalled, and crashed into the sand. Only three days later, on December 17, 1903, Wilbur's brother, Orville Wright flew the airplane for the world's first powered, sustained, and controlled heavier-than-air flight in history. Although the failed test flight on December 14 would be mostly forgotten in aviation, it remains one of the earliest recorded aviation accidents in history.
In the early years of air travel, accidents were exceedingly common. 1929 was named the year of "The Great Crash" due to the frequency of aircraft accidents that occurred during the year, with 24 fatal accidents officially reported. In 1928 and 1929, the overall accident rate was about 1 in every million miles (1.6 million kilometers) flown. In today's industry, that accident rate would translate to about 7,000 fatal accidents each year.
For the ten-year period 2002 to 2011, 0.6 fatal accidents happened per one million flights globally, 0.4 per million hours flown, 22.0 fatalities per one million flights or 12.7 per million hours flown.
From 310 million passengers in 1970, air transport had grown to 3,696 million in 2016, led by 823 million in the United States, then 488 million in China. In 2016, 19 fatal accidents involved civil airliners with more than 14 passengers. These accidents resulted in 325 fatalities, the second safest year ever after 2015 with 16 accidents and 2013 with 265 fatalities. For planes heavier than 5.7 metric tones, there were 34.9 million departures and 75 accidents worldwide with 7 of these fatal for 182 fatalities, the lowest since 2013 : fatalities per million departures.
In 2017, there were 10 fatal airliner accidents, resulting in 44 occupant fatalities and 35 persons on the ground: the safest year ever for commercial aviation, both by the number of fatal accidents as well as in fatalities.
By 2019, fatal accidents per million flights decreased 12 fold since 1970, from 6.35 to 0.51, and fatalities per trillion revenue passenger kilometre (RPK) decreased 81 fold from 3,218 to 40.
Loss of control inflight represents 35% of the fatal accidents, Controlled flight into terrain 21%, 17%, system or component failure: 6%, Touchdown off the runway: 5%, Hard landing: 4% and fire: 2%.
Safety has improved from better aircraft design process, engineering and maintenance, the evolution of navigation aids, and safety protocols and procedures.
The first two statistics are computed for typical travels by their respective forms of transport, so they cannot be used directly to compare risks related to different forms of transport in a particular travel "from A to B". For example, these statistics suggest that a typical flight from Los Angeles to New York would carry a larger risk factor than a typical car travel from home to office. However, car travel from Los Angeles to New York would not be typical; that journey would be as long as several dozen typical car travels, and thus the associated risk would be larger as well. Because the journey would take a much longer time, the overall risk associated with making this journey by car would be higher than making the same journey by air, even if each individual hour of car travel is less risky than each hour of flight.
For risks associated with long-range intercity travel, the most suitable statistic is the third one: deaths per billion kilometers. Still, this statistic can lose credence in situations where the availability of an air option makes an otherwise inconvenient journey possible.
Aviation industry insurers base their calculations on the deaths per journey statistic while the aviation industry itself generally uses the deaths per kilometre statistic in press releases.
Since 1997, the number of fatal air accidents has been no more than 1 for every 2,000,000,000 person-miles flown, and thus is one of the safest modes of transportation when measured by passenger miles.
The Economist notes that air travel is safer by distance travelled, but trains are as safe as planes. It also notes that cars are four times more hazardous for deaths per time travelled, and cars and trains are respectively three times and six times safer than planes by number of journeys taken.
Because the above figures are focused on providing a perspective to the realm of everyday transportation, air travel is taken to include only standard civil passenger aviation, as offered commercially to the general public. Military and special-purpose aircraft are excluded.
The number of deaths per passenger-mile on commercial airlines in the United States between 2000 and 2010 was about 0.2 deaths per 10 billion passenger-miles. For driving, the rate was 150 per 10 billion vehicle-miles for 2000: 750 times higher per mile than for flying in a commercial airplane.
There were no fatalities on large scheduled commercial airlines in the United States for over nine years, between the Colgan Air Flight 3407 crash in February 2009, and a catastrophic engine failure on Southwest Airlines Flight 1380 in April 2018.
The terrorist attacks of 2001 are not counted as accidents. However, even if they were counted as accidents they would have added about 1 death per billion person-miles. Two months later, American Airlines Flight 587 crashed in New York City, killing 265 people, including 5 on the ground, causing 2001 to show a very high fatality rate. Even so, the rate that year including the attacks (estimated here to be about 4 deaths per billion person-miles), is safe compared to some other forms of transport when measured by distance traveled.
Gyrocopters were developed by Juan de la Cierva to avoid stall and spin accidents, and for that invented cyclic and collective controls used by . The first flight of a gyrocopter was on 17 January 1923.
During the 1920s, the first laws were passed in the United States of America to regulate civil aviation, notably the Air Commerce Act of 1926, which required pilots and aircraft to be examined and licensed, for accidents to be properly investigated, and for the establishment of safety rules and navigation aids; under the Aeronautics Branch of the United States Department of Commerce (US DoC).
A network of aerial lighthouses was established in the United Kingdom and Europe during the 1920s and 1930s. Use of the lighthouses has declined with the advent of radio navigation aids such as non-directional beacon (NDB), VHF omnidirectional range (VOR), and distance measuring equipment (DME). The last operational aerial lighthouse in the United Kingdom is on top of the cupola over the RAF College main hall at RAF Cranwell.
One of the first aids for air navigation to be introduced in the United States in the late 1920s was airfield lighting, to assist pilots in making landings in poor weather or after dark. The Precision Approach Path Indicator (PAPI) was developed from this in the 1930s, indicating to the pilot the angle of descent to the airfield. This later became adopted internationally through the standards of the International Civil Aviation Organization (ICAO).
Jimmy Doolittle developed instrument rating and made his first 'blind' flight in September 1929. The March 1931 wooden wing failure of a Transcontinental & Western Air Fokker F-10 carrying Knute Rockne, coach of the University of Notre Dame's football team, reinforced all-metal and led to a more formal accident investigation system.
On 4 September 1933, a Douglas DC-1 test flight was conducted with one of the two engines shut down during the takeoff run, climbed to , and completed its flight, proving twin aircraft engine safety.
With greater range than lights and weather immunity, radio navigation aids were first used in the 1930s, like the Australian guiding transport flights, with a light beacon and a modified Lorenz beam transmitter (the German blind-landing equipment preceding the modern instrument landing system - ILS). ILS was first used by a scheduled flight to make a landing in a snowstorm at Pittsburgh, Pennsylvania, in 1938, and a form of ILS was adopted by the ICAO for international use in 1949.
Developed by the U.S. and introduced during World War II, LORAN replaced the sailors' less reliable compass and celestial navigation over water and survived until it was replaced by the Global Positioning System.
Following the development of radar in World War II, it was deployed as a landing aid for civil aviation in the form of ground-controlled approach (GCA) systems then as the airport surveillance radar as an aid to air traffic control in the 1950s.
A number of ground-based weather radar systems can detect areas of severe turbulence.
A modern Honeywell Intuvue weather system visualizes weather patterns up to away.
Distance measuring equipment (DME) in 1948 and VHF omnidirectional range (VOR) stations became the main route navigation means during the 1960s, superseding the low frequency radio ranges and the non-directional beacon (NDB): the ground-based VOR stations were often co-located with DME transmitters and the pilots could establish their bearing and distance to the station.
With the arrival of Wide Area Augmentation System (WAAS), satellite navigation has become accurate enough for altitude as well as positioning use, and is being used increasingly for instrument approaches as well as en-route navigation. However, because the GPS constellation is a single point of failure, on-board Inertial Navigation System (INS) or ground-based navigation aids are still required for backup.
In 2017, Rockwell Collins reported it had become more costly to certify than to develop a system, from 75% engineering and 25% certification in past years.
It calls for a global harmonization between certifying authorities to avoid redundant engineering and certification tests rather than recognizing the others approval and validation.
Groundings of entire classes of aircraft out of equipment safety concerns is unusual, but this has occurred to the de Havilland Comet in 1954 after multiple crashes due to metal fatigue and hull failure, the McDonnell Douglas DC-10 in 1979 after the crash of American Airlines Flight 191 due to engine loss, the Boeing 787 Dreamliner in 2013 after its battery problems, and the Boeing 737 MAX in 2019 after two crashes preliminarily tied to a flight control system.
The dangers of more powerful positive lightning were not understood until the destruction of a glider in 1999. It has since been suggested that positive lightning might have caused the crash of Pan Am Flight 214 in 1963. At that time, aircraft were not designed to withstand such strikes because their existence was unknown. The 1985 standard in force in the US at the time of the glider crash, Advisory Circular AC 20-53A, was replaced by Advisory Circular AC 20-53B in 2006. However, it is unclear whether adequate protection against positive lightning was incorporated. Hiding requirements = suspicion they're inadequate , Nolan Law Group, January 18, 2010 A Proposed Addition to the Lightning Environment Standards Applicable to Aircraft . J. Anderson Plumer. Lightning Technologies, Inc. published 2005-09-27.
The effects of typical lightning on traditional metal-covered aircraft are well understood and serious damage from a lightning strike on an airplane is rare. Modern airliners like the Boeing 787 Dreamliner with exteriors and wings made from carbon-fiber-reinforced polymer have been tested and shown to receive no damage from lightning strikes during testing.
Even a small amount of icing or coarse frost can greatly impair the ability of a wing to develop adequate lift, which is why regulations prohibit ice, snow or even frost on the wings or tail, prior to takeoff. Air Florida Flight 90 crashed on takeoff in 1982, as a result of ice/snow on its wings.
An accumulation of ice during flight can be catastrophic, as evidenced by the loss of control and subsequent crashes of American Eagle Flight 4184 in 1994, and Comair Flight 3272 in 1997. Both aircraft were turboprop airliners, with straight wings, which tend to be more susceptible to inflight ice accumulation, than are swept-wing jet airliners.
Airlines and airports ensure that aircraft are properly de-iced before takeoff whenever the weather involves icing conditions. Modern airliners are designed to prevent ice buildup on , Aircraft engine, and tails (empennage) by either routing heated air from through the of the wing, and inlets, or on slower aircraft, by use of inflatable rubber "Deicing boot" that expand to break off any accumulated ice.
Airline flight plans require airline dispatch offices to monitor the progress of weather along the routes of their flights, helping the Aviator to avoid the worst of inflight icing conditions. Aircraft can also be equipped with an ice detector in order to warn pilots to leave unexpected ice accumulation areas, before the situation becomes critical. in modern airplanes and helicopters have been provided with the function of "Pitot Heating" to prevent accidents like Air France Flight 447 caused by the pitot tube freezing and giving false readings.
Strong outflow from thunderstorms causes rapid changes in the three-dimensional wind velocity just above ground level. Initially, this outflow causes a headwind that increases airspeed, which normally causes a pilot to reduce engine power if they are unaware of the wind shear. As the aircraft passes into the region of the downdraft, the localized headwind diminishes, reducing the aircraft's airspeed and increasing its sink rate. Then, when the aircraft passes through the other side of the downdraft, the headwind becomes a tailwind, reducing lift generated by the wings, and leaving the aircraft in a low-power, low-speed descent. This can lead to an accident if the aircraft is too low to effect a recovery before ground contact. Between 1964 and 1985, wind shear directly caused or contributed to 26 major civil transport aircraft accidents in the U.S. that led to 620 deaths and 200 injuries.
In a multi-engine aircraft, failure of a single engine usually results in a precautionary landing being performed, for example, landing at a diversion airport instead of continuing to the intended destination. Failure of a second engine (e.g. US Airways Flight 1549) or damage to other aircraft systems caused by an uncontained engine failure (e.g. United Airlines Flight 232) may, if an emergency landing is not possible, result in the aircraft crashing.
Composite materials consist of layers of embedded in a resin matrix. In some cases, especially when subjected to cyclic stress, the layers of the material separate from each other (delamination) and lose strength. As the failure develops inside the material, nothing is shown on the surface; instrument methods (often ultrasound-based) have to be used to detect such a material failure. In the 1940s several Yakovlev Yak-9s experienced delamination of plywood in their construction.
Another example is Airlines PNG Flight 1600 (2011) which suffered a fatal forced landing, primarily due to a engine failure. This failure was discovered to be caused by a design flaw in the thrust lever, which allowed the pilot to accidentally place the levers into reverse due to the design of the levers.
Devices to warn the pilot when the aircraft's speed is decreasing close to the stall speed include stall warning horns (now standard on virtually all powered aircraft), , and voice warnings. Most stalls are a result of the pilot allowing the airspeed to be too slow for the particular weight and configuration at the time. Stall speed is higher when ice or frost has attached to the wings and/or tail stabilizer. The more severe the icing, the higher the stall speed, not only because smooth airflow over the wings becomes increasingly more difficult, but also because of the added weight of the accumulated ice.
Crashes caused by a full stall of the airfoils include:
Fire and its toxic smoke have been the cause of accidents. An electrical fire on Air Canada Flight 797 in 1983 caused the deaths of 23 of the 46 passengers, resulting in the introduction of floor level lighting to assist people to evacuate a smoke-filled aircraft. In 1985, a fire on the runway caused the loss of 55 lives, 48 from the effects of incapacitating and subsequently lethal toxic gas and smoke in the British Airtours Flight 28M accident which raised serious concerns relating to survivability – something that had not been studied in such detail. The swift incursion of the fire into the fuselage and the layout of the aircraft impaired passengers' ability to evacuate, with areas such as the forward galley area becoming a bottle-neck for escaping passengers, with some dying very close to the exits. Much research into evacuation and cabin and seating layouts was carried out at Cranfield Institute to try to measure what makes a good evacuation route, which led to the seat layout by Overwing exits being changed by mandate and the examination of evacuation requirements relating to the design of galley areas. The use of or misting systems were also examined although both were rejected.
South African Airways Flight 295 was lost in the Indian Ocean in 1987 after an in-flight fire in the cargo hold could not be suppressed by the crew. The cargo holds of most airliners are now equipped with automated Halomethane fire extinguishing systems to combat a fire that might occur in the baggage holds. In May 1996, ValuJet Flight 592 crashed into the Florida Everglades a few minutes after takeoff because of a fire in the forward cargo hold. All 110 people on board were killed.
At one time, fire fighting were laid down before an emergency landing, but the practice was considered only marginally effective, and concerns about the depletion of firefighting capability due to pre-foaming led the United States FAA to withdraw its recommendation in 1987.
One possible cause of fires in airplanes is wiring problems that involve intermittent faults, such as wires with breached insulation touching each other, having water dripping on them, or short circuits. Notable was Swissair Flight 111 in 1998 due to an arc in the wiring of IFE which ignited flammable MPET insulation. These are difficult to detect once the aircraft is on the ground. However, there are methods, such as spread-spectrum time-domain reflectometry, that can feasibly test live wires on aircraft during flight.
Jet engines have to be designed to withstand the ingestion of birds of a specified weight and number and to not lose more than a specified amount of thrust. The weight and numbers of birds that can be ingested without hazarding the safe flight of the aircraft are related to the engine intake area."Part33-Airworthiness standards-Aircraft Engines" section 33.76 Bird ingestion The hazards of ingesting birds beyond the "designed-for" limit were shown on US Airways Flight 1549 when the aircraft struck Canada geese.
The outcome of an ingestion event and whether it causes an accident, be it on a small fast plane, such as military jet fighters, or a large transport, depends on the number and weight of birds and where they strike the fan blade span or the nose cone. Core damage usually results with impacts near the blade root or on the nose cone.
The highest risk of a bird strike occurs during takeoff and landing in the vicinity of , and during low-level flying, for example by military aircraft, crop dusters and helicopters. Some airports use active countermeasures, including a person with a shotgun, playing recorded sounds of predators through loudspeakers, or employing Falconry. Poisonous grass can be planted that is not palatable to birds, nor to insects that attract Insectivore birds. Passive countermeasures involve sensible land-use management, avoiding conditions attracting flocks of birds to the area (e.g. ). Another tactic found effective is to let the grass at the airfield grow taller (to approximately ) as some species of birds won't land if they cannot see one another.
Pilot error and improper communication are often factors in the collision of aircraft. This can take place in the air (1978 Pacific Southwest Airlines Flight 182) (TCAS) or on the ground (1977 Tenerife disaster) (RAAS). The barriers to effective communication have internal and external factors. The ability of the flight crew to maintain situational awareness is a critical human factor in air safety. Human factors training is available to general aviation pilots and called single pilot resource management training.
Failure of the pilots to properly monitor the flight instruments caused the crash of Eastern Air Lines Flight 401 in 1972. Controlled flight into terrain (CFIT), and error during take-off and landing can have catastrophic consequences, for example causing the crash of Prinair Flight 191 on landing, also in 1972.
In 1982, Japan Airlines Flight 350 crashed while on approach to the Tokyo Haneda Airport, killing 24 of the 174 on board. The official investigation found the mentally ill captain had attempted suicide by placing the inboard engines into reverse thrust, while the aircraft was close to the runway. The first officer did not have enough time to countermand before the aircraft stalled and crashed.
In 1997, SilkAir Flight 185 suddenly went into a high dive from its cruising altitude. The speed of the dive was so high that the aircraft began to break apart before it finally crashed near Palembang, Sumatra. After three years of investigation, the Indonesian authorities declared that the cause of the accident could not be determined. However, the US NTSB concluded that deliberate suicide by the captain was the only reasonable explanation.
Crew involvement is one of the speculative theories in the disappearance of Malaysia Airlines Flight 370 on 8 March 2014.
On 24 March 2015, Germanwings Flight 9525 (an Airbus A320-200) crashed north-west of Nice, in the French Alps, after a constant descent that began one minute after the last routine contact with air traffic control, and shortly after the aircraft had reached its assigned cruise altitude. All 144 passengers and six crew members were killed. The crash was intentionally caused by the co-pilot, Andreas Lubitz. Having been declared 'unfit to work' without telling his employer, Lubitz reported for duty, and during the flight locked the captain out of the flight-deck. In response to the incident and the circumstances of Lubitz's involvement, aviation authorities in Canada, New Zealand, Germany, and Australia implemented new regulations that require two authorised personnel to be present in the cockpit at all times. Three days after the incident, the European Aviation Safety Agency (EASA) issued a temporary recommendation for airlines to ensure that at least two crew members, including at least one pilot, are in the cockpit at all times of the flight. Several airlines announced they had already adopted similar policies voluntarily.
Although Smartwings QS-1125 flight of 22 August 2019 successfully made an emergency landing at destination, the captain was censured for failing to follow mandatory procedures, including for not landing at the nearest possible diversion airport after an engine failure.
Another anti-CFIT tool is the Minimum Safe Altitude Warning (MSAW) system which monitors the altitudes transmitted by aircraft transponders and compares that with the system's defined minimum safe altitudes for a given area. When the system determines the aircraft is lower, or might soon be lower, than the minimum safe altitude, the air traffic controller receives an acoustic and visual warning and then alerts the pilot that the aircraft is too low.
An example problem was the depressurization incident on Alaska Airlines Flight 536 in 2005. During ground services, a baggage handler hit the side of the aircraft with a tug towing a train of . This damaged the metal skin of the aircraft. This damage was not reported and the plane departed. Climbing through the damaged section of the skin gave way under the difference in pressure between the inside of the aircraft and the outside air. The cabin depressurized explosively necessitating a rapid descent to denser (breathable) air and an emergency landing. Post-landing examination of the fuselage revealed a hole on the right side of the airplane.
Prior to 2010 the general approach taken by airspace regulators was that if the ash concentration rose above zero, then the airspace was considered unsafe and was consequently closed.
Volcanic Ash Advisory Centers enable liaison between , , and the aviation industry.
The last two types can be prevented with airport surveillance and broadcast systems, a Runway Awareness and Advisory System, and landing navigation systems (e.g. transponder landing system, microwave landing system, instrument landing system).
In the United States, the Federal Flight Deck Officer program is run by the Federal Air Marshal Service, with the aim of training active and licensed airline pilots to carry weapons and defend their aircraft against criminal activity and terrorism. Upon completion of government training, selected pilots enter a covert law enforcement and counter-terrorism service. Their jurisdiction is normally limited to a flight deck or a cabin of a commercial airliner or a cargo aircraft they operate while on duty.
Since pilot error accounts for between one-third and 60% of aviation accidents, advances in automation and technology could replace some or all of the duties of the . Automation since the 1980s has already eliminated the need for . In complex situations with severely degraded systems, the problem-solving and judgement capability of humans is challenging to achieve with automated systems, for example the catastrophic engine failures experienced by United Airlines Flight 232 and Qantas Flight 32. However, with more accurate software modeling of aeronautic factors, test planes have been successfully flown in these conditions.
While the accident rate is very low, to ensure they do not rise with the air transport growth, experts recommend creating a robust culture of collecting information from employees without blame.
Transport comparisons
0.4 0.6 1.2 3.1 54.2 2.6 0.05 44.6 108.9 Paragliding
United States
Security
Developments
Before WWII
Post-WWII
Jetliners
The fatal accident rate fell from 3.0 per million flights for the first generation to 0.9 for the next, 0.3 for the third and 0.1 for the last.
Hazards
Unapproved parts
Foreign object debris
Misleading information and lack of information
Lightning
Ice and snow
Wind shear or microburst
Engine failure
Structural failure of the aircraft
Design flaws
Stalling
Fire
Bird strike
Human factors
/ref> Much progress in applying human factors analysis to improving aviation safety was made around the time of World War II by such pioneers as Paul Fitts and Alphonse Chapanis. However, there has been progress in safety throughout the history of aviation, such as the development of the pilot's checklist in 1937. CRM, or crew resource management, is a technique that makes use of the experience and knowledge of the complete flight crew to avoid dependence on just one crew member, and to improve pilot decision making.
Pilot fatigue
Piloting while intoxicated
Pilot suicide and murder
/ref>
Deliberate aircrew inaction
Human factors of third parties
Controlled flight into terrain
Electromagnetic interference
Ground damage
Volcanic ash
Runway safety
Terrorism
/ref> Since the September 11, 2001 attacks, stricter airport security and airline security measures are in place to prevent terrorism, such as security checkpoints and locking the cockpit doors during flight.
Military action
Accident survivability
Airport design
Emergency airplane evacuations
Aircraft materials and design
Radar and wind shear detection systems
/ref> The installation of high-resolution Terminal Doppler Weather Radar stations at many U.S. airports that are commonly affected by wind shear has further aided the ability of pilots and ground controllers to avoid wind shear conditions.
Accidents and incidents
National investigation organizations
Air safety investigators
Safety improvement initiatives
After the disappearance of Malaysia Airlines Flight 370, in June 2014, the International Air Transport Association said it was working on implementing new measures to track aircraft in flight in real time. A special panel was considering a range of options including the production of equipment especially designed to ensure real-time tracking.
Regulators
See also
Notes
External links
|
|